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Abstract

We consider the problem of allocating multiple objects to agents via an auction
by using �points�as in the �Course Bidding System�which is employed by several
business and law schools to allocate course seats to students. We assume that
each agent has a �xed amount of divisible �points� which can only be used for
bidding purposes and have no monetary value. Each agent simultaneously bids for
the objects, and each object is allocated to the agent who bids highest for that
object. This game is equivalent to the classical Colonel Blotto game. We consider
an incomplete information setting where each agent has multidimensional private
information regarding valuations for multiple objects and solve for a Bayes-Nash
equilibrium of this game for a class of value distributions when there are two agents
and n � 2 objects. Furthermore, we show that for all the value distributions for
which we can solve for equilibrium in closed form, every type of agent has a higher
interim payo¤under this allocation method compare to any other allocation method
that depends only on ordinal preferences.

Keywords: Colonel Blotto game; incomplete information; allocation without
transfers.
JEL Codes: C7; D82

1 Introduction

It is unfair or undesirable to use monetary transfers in many real-life situations. Allo-
cating o¢ ce spaces to workers, students to public schools, course seats to students are
notable examples among many others. It is also important to increase e¢ ciency to the
maximum possible extent in such situations. Recently, many business and law schools
have adopted a system based on an auction where �points�are used for bidding to allo-
cate course seats to students, the so-called �Course Bidding System�, in order to create
a fake market environment in the absence of monetary transfers in the hope of allowing
students with the highest desire for a course to take that particular course.
Although there are several complexities, this system mainly allocates course seats to

students as follows. Students are given a positive bid endowment, the so-called points,
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and they bid for the courses by using these points. Students with highest bids for a
course, up to the number of available seats, are assigned a seat in that course.1

Inspired by this system, we consider the problem of allocating goods to agents via
an auction where only �points�can be used for bidding.2 In particular, we assume that
there are n � 2 distinct objects to be allocated to m = 2 agents. We consider a standard
Bayesian setting in which each agent has private information regarding his/her values for
the objects. Each agent is endowed with divisible points in the amount of B > 0 which is
commonly known and can only be used for bidding. Each agent simultaneously submits
bids for each object under the �budget� constraint. Then, each object is given to the
agent who submits the highest bid.3 We, furthermore, assume that preferences of agents
over bundles of objects are additively separable. That is, the payo¤ of an agent from a
bundle is just the sum of his/her values for the objects included in that bundle.
The auction game considered here is equivalent to the classical Colonel Blotto game,

which was introduced by Borel (1921). In the original version of this game, there are
two colonels and each has a unit of military resources. The colonels are going to �ght
in several battle�elds.4 Each colonel simultaneously chooses how to distribute limited
resources across the battle�elds. At each battle�eld, the colonel who has higher resources
wins and each colonel�s payo¤ is equal to the number of battle�elds at which he has
won the �ght. That is, each battle�eld is equally valued by each colonel. Note also that
colonels only care whether they win the �ght at a battle�eld. That is, gone resources are
sunk costs that do not a¤ect colonels�payo¤s.
Although the Colonel Blotto game has been �rst considered in such a military sit-

uation, it has several applications in a variety of political, social and other competitive
situations in addition to the course bidding system as mentioned. Political campaigns
constitute one example in which a similar situation arises. Political parties should decide
how to allocate their resources to attract voters, and they only care whether they win
the election. Another application might be trials in which lawyers have to decide how
much resource (time, e¤ort) to allocate into di¤erent lines of defense to be able to �win�
against other lawyer. Several other situations such as lobbying, competing in sports can
be considered as applications of this game.
We consider the Colonel Blotto game when each agent�s values for objects are privately

known and agents�values may be di¤erent from other agents�values. More precisely,
each agent�s private information is an n-dimensional vector that consists of values for
each object. Our results are two-fold. First, we look for a Bayes-Nash equilibrium of
this game. Although it is in general hard to obtain closed-form expressions for equilibria
when there is multi-dimensional incomplete information in such problems, we were able
to do so in some cases. We �rst consider the case when there are n = 2 objects. In that
case, agents have a (weakly) dominant strategy to bid all their points in the object that

1Northwestern Kellogg, MIT Sloan, Wharton, Yale School of Management, Columbia Business School
and University of Michigan Business School are among many others that employ variants of such an
auction to allocate course seats to students. We refer the reader to Sönmez and Ünver (2010) for further
details about this system.

2Note that we will not try to formalize and/or solve for the �Course Bidding System�. We will
consider a simpler allocation problem. We just borrow the idea of �allocation with points� from this
system.

3Ties are resolved by a fair coin toss.
4In the original version, there are 3 battle�elds.
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they value more. Note that this strategy does not depend on any information regarding
intensity of the preferences. It just depends on the ordinal ranking over objects. Next,
we consider the case when n > 2. In this case, the equilibrium strategies depend on the
intensity of preferences, namely on cardinal preferences. For a class of value distributions,
we obtain simple closed-form expressions for an equilibrium in this case.
The original Colonel Blotto game dates back to 1921. The solution to this game is

given by Borel and Ville (1938) when there are 3 battle�elds, and later by Gross and
Wagner (1953) for more than 3 battle�elds, and valuations are identical both across bat-
tle�elds and agents. Roberson (2006) analyzes the game allowing for asymmetric budgets.
Hortala-Vallve and Llorente-Saguer (2012) and Thomas (2018) consider the problem when
colonels have asymmetric and heterogeneous battle�eld valuations. Importantly, all these
papers consider the problem under complete information: Each colonel knows the bat-
tleship valuations of the other colonel and also know the budget (total resources) of the
other colonel.
There are just a couple of papers that investigate the Colonel Blotto game under

incomplete information. Adamo and Matros (2009) study the Colonel Blotto game when
there is incomplete information about agents�budgets but battleship valuations are com-
monly known. Kovenock and Roberson (2011) (KR, henceforth) consider an environment
similar to ours in which agents have private information about their valuations and agents�
budgets are symmetric and commonly known. KR solve for equilibrium for the case of
3 battle�elds and 2 agents when each agent�s value is independently and symmetrically
drawn from one special value distribution, namely, the uniform distribution over the unit
sphere on the nonnegative orthant for which the marginal distributions are uniform dis-
tribution over [0; 1]. In a more recent paper, Ewerhart and Kovenock (2019) extend the
example of KR by solving for equilibrium for the case of (n+ 1) battle�elds and n agents
when each agent�s value is again independently and symmetrically drawn from the uni-
form distribution over the generalized unit sphere for which the marginal distributions
are still uniform distribution over [0; 1] as in KR. We, on the other hand, solve for equi-
librium for the case of n � 2 battle�elds and two agents when agents�values are drawn
(possibly) asymmetrically for a larger class of value distributions, not restricted to the
uniform distribution, and the values are allowed to lie in more general domains than the
unit sphere.
Second aspect of our results will be on welfare properties of this allocation method,

which are nonexistent in related papers. In many real-life applications, allocation rules
that only use ordinal preferences of agents over agents are predominantly used when
transfers can not be used. In assigning students to public schools, students report their
ordinal rankings over schools and a predetermined algorithm determines the assignments
given students�ordinal preferences. The so-called Boston mechanism and the well-known
Deferred Acceptance (DA) mechanism are currently the most widely-used mechanisms
in many school districts in the US.5 Another ordinal mechanism, the Random Serial
Dictatorship (RSD) mechanism in which an order over agents is randomly determined
and following the order each agent chooses the object he wants among the available

5Although school choice problem is di¤erent from the problem at hand since in school choice problem
there are multiple copies of objects (school seats) and each agent (student) can only obtain one object
and also it is a two-sided problem, we present these examples to emphasize the extensive use of ordinal
mechanisms in practice.
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objects, is a very popular mechanism that has been used extensively in many allocation
problems when monetary transfers are not allowed.
Although assignment rules that only use ordinal preferences are predominantly used

in applications and in the literature, it is not clear why we should restrict ourselves
to such rules.6 �Auction with points�7 is another way to allocate objects to agents
without monetary transfers, as in allocating course seats to students, and its outcomes
can depend on not only ordinal preferences but also cardinal preferences.8 Therefore,
it is important to understand how this mechanism compares to the other mechanisms
in terms of welfare of agents. For the cases we could obtain closed-form expressions
for equilibrium for the Blotto game, we compare allocating objects via an auction with
points to incentive compatible ordinal mechanisms and we show that each type of agent
has a higher interim payo¤ under the Blotto game than any other ordinal mechanism.
Allocating via an auction with points is a mechanism that is easy to implement in many
real-life situations, which is already used in practice as in the aforementioned Course
Bidding System. Therefore, welfare superiority of this mechanism over the widely-used
ordinal mechanisms may have signi�cant policy implications.
The remainder of this paper proceeds as follows. First, we introduce the formal model,

and we solve for equilibrium �rst for n = 2 and then we obtain equilibrium for a class
of value distributions when n � 3. In Section 3, we compare the welfare of agents under
the Blotto mechanism to ordinal mechanisms. Finally, we conclude.

2 Model

Assume that there are m = 2 agents and n � 2 objects. Each agent i derives a value
vij � 0 from obtaining object j. Assume that vi = (vi1; :::; v

i
n) is independently drawn

from a distribution Gi over
�
vi; vi

�n
. The payo¤ of an agent is just the sum of his values

of objects he gets.
Each agent has divisible bid endowment (points) in the amount of B > 0 and this

is commonly known. Agents, after privately observing their valuations, simultaneously
choose how much to bid for each object where the sum of bids is B.9 That is, agent i
chooses a bid vector (bi1; :::; b

i
n) 2 [0; B]

n such that

nX
j=1

bij = B.

For each object, the agent who has the highest bid for that object gets the object and if
there is a tie, the agent who gets the object is determined by a fair coin toss. Monetary
transfers are not allowed and only points can be used for bidding.
We want to solve for Bayesian Nash equilibrium of this game. We denote a pure

strategy as �i :
�
vi; vi

�n ! [0; B]n such that �i =
�
�ij
�n
j=1

and for all vi = (vi1; :::; v
i
n),

6Che and Kojima (2010) similarly states that only using ordinal preferences in many assignment rules
is unclear but they take it as given in Footnote 3.

7We will sometimes refer to this method as the �Blotto mechanism�from now on.
8Except the case when there are n = 2 objects as we have discussed above.
9Since points have no value other than bidding, agents will always use all of their points.
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�ij (v
i) 2 [0; B] and

nX
j=1

�ij
�
vi
�
= B.

Firstly, we consider the case when n = 2.

Proposition 1 Assume that there are n = 2 objects to be allocated and agent i�s values
are independently drawn from distribution Gi (:; :). Then, a strategy in which each agent
bids all points on the object with a higher valuation is a weakly dominant strategy. More
precisely, any strategy with

� (v1; v2) =

�
(B; 0) if v1 > v2
(0; B) if v1 < v2

is a weakly dominant strategy for each agent. That is,

Proof. Consider agent 1 with type (v1; v2). Assume that v1 > v2. Consider a strategy
of agent 2 and let B21 be the random variable denoting agent 2�s bids on o1. Now, by
bidding (B; 0), the expected payo¤ of agent 1 is

Pr
�
B21 = B

��v1 + v2
2

�
+ Pr

�
B21 < B

�
v1 (1)

since if agent 2 bids B on �rst object this means that bids of agents for both objects are
the same, therefore, each agent will get each object with probability 1

2
and when if agent

2 bids less than B on o1 which means that by bidding a positive amount on o2, agent 1
will get o1 and agent 2 will get o2.
Similarly, by bidding (b; 1� b), 0 < b < 1, agent 1�s expected payo¤ is

Pr
�
B21 > b

�
v2 + Pr

�
B21 = b

��v1 + v2
2

�
+ Pr

�
B21 < b

�
v1 (2)

= Pr
�
B21 = B

�
v2 + Pr

�
B > B21 > b

�
v2 + Pr

�
B21 = b

��v1 + v2
2

�
+ Pr

�
B21 < b

�
v1.

By bidding (0; B), agent 1�s expected payo¤

Pr
�
B21 > 0

�
v2 + Pr

�
B21 = 0

��v1 + v2
2

�
. (3)

Note that (1) � (2) � (3). Thus, when v1 > v2, for any bid distribution of agent 2, B21 ,
it is (weakly) better to bid (B; 0) than any other possible bid. Similarly, for v1 < v2, for
any bid distribution of agent 2, B21 , it is (weakly) better to bid (0; B) than any other
possible bid.. For v1 = v2, agent is indi¤erent among all possible bids.
Furthermore, note that the above arguments similarly applies to agent 2. Hence, we

have the desired result.
Note that when there are n = 2 objects, the equilibrium of this game only depends

on ordinal preferences. More precisely, an individual bids all his points on the good he
prefers more regardless of the intensity of preferences. However, when there are n > 2
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objects, this is not true anymore and equilibrium strategies can depend on the preference
intensities for goods as the results below will demonstrate.
First, we solve for equilibrium of this game for a certain class of value distributions

when n = 3.

Proposition 2 Assume that agent 1 and 2�s values are independently drawn from con-
tinuous distributions G1 (v1; v2; v3) and G2 (w1; w2; w3), respectively, such that densities
are of the following form:

g1 (v1; v2; v3) = eg1 ��v21 + v22 + v23��
and

g2 (w1; w2; w3) = eg2 ��w21 + w22 + w23�� ,
where eg1 and eg2 are measurable functions on R+ such that

1Z
0

egi (x)x 1
2dx =

4

�
.10

Then, the following is a symmetric equilibrium

� (v1; v2; v3) =

�
v21

v21 + v
2
2 + v

2
3

B;
v22

v21 + v
2
2 + v

2
3

B;
v23

v21 + v
2
2 + v

2
3

B

�
.

Proof. See the Appendix.
That is, as long as the density functions depend only on the sum of squares, regardless

of the support of the distribution and without requiring symmetry across agents, we
obtain an equilibrium in closed-form. Furthermore, for any measurable function egi that
satis�es the given requirement, gi becomes a density.
Some examples of densities that satisfy the given condition are as follows.

Example 1 Let eg (x) = 8
�
p
�
exp (� (x)) when x � 0. Note that

1Z
0

8

�
p
�
exp (� (x))x 1

2dx =
4

�
.

Hence, for g (v1; v2; v3) = 8
�
p
�
exp (� (v21 + v22 + v23)), v1; v2; v3 � 0 we have the result.

Note that this is the density if v1; v2; v3 comes independently from Generalized Gamma
Distribution with parameters (a; d; p) = (1; 1; 2) where general density of this distribution

is given by
�

p
ad
xd�1e�(

x
a )
p

�( dp)

�
, x � 0. That is, each vi is independently from a distribution

with density

f (x) =
2p
�
exp (�x) , x � 0.

10This makes sure that gi (v1; v2; v3) is a density function.
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Example 2 Let eg (x) = 6
�
if 0 � x � 1 and 0 otherwise:Then,

g (v1; v2; v3) =
6

�
if v21 + v

2
2 + v

2
3 � 1.

That is, if (v1; v2; v3) is uniformly distributed inside the unit sphere.

Example 3 Let eg (x) = 6
7�
if 1 < x � 4 and 0 otherwise:Then,

g (v1; v2; v3) =
6

7�
if 1 < v21 + v

2
2 + v

2
3 � 4.

That is, if (v1; v2; v3) is uniformly distributed inside sphere with radius 2 but outside the
unit sphere.

Similarly, we next solve for a symmetric equilibrium of the Colonel Blotto game for a
class of distribution functions for n > 3. The proofs are relegated to the Appendix.

Proposition 3 Assume that there are n > 3 objects. Assume that players� values are
independently drawn from continuous distributions G1 (v1; :::; vn) and G2 (w1; :::; wn) such
that densities are of the following form:

g1 (v1; v2; v3) = [v1:::vn]
3�n
n�2 eg1��v n�1n�2

1 + :::+ v
n�1
n�2
n

��
and

g2 (w1; w2; w3) = [v1:::vn]
3�n
n�2 eg2��v n�1n�2

1 + :::+ v
n�1
n�2
n

��
,

where eg1 and eg2 are measurable functions on R+ such that
1Z
0

egi (x)x 1
n�1dx = �

�
n

n� 1

� 
1

�
�

1
n�1
�!n�n� 1

n� 2

�n
.11

Then, the following is a symmetric equilibrium

� (v1; v2:::; vn) =

0@ v
n�1
n�2
1

v
n�1
n�2
1 + :::+ v

n�1
n�2
n

B;
v
n�1
n�2
2

v
n�1
n�2
1 + :::+ v

n�1
n�2
n

B; :::;
v
n�1
n�2
n

v
n�1
n�2
1 + :::+ v

n�1
n�2
n

B

1A .
Proof. See the Appendix.
One distribution example that satisfy the su¢ cient conditions listed in the Proposition

is as follows. Other examples can be easily constructed.

Example 4 Assume that each vi is independently drawn from Generalized Gamma Dis-
tribution with parameters (a; d; p) =

�
1; 1

n�2 ;
n�1
n�2
�
where general density of this distribu-

tion is given by
�

p
ad
xd�1e�(

x
a )
p

�( dp)

�
, x � 0. That is, each vi is independently drawn from a

11Again, this makes sure that gi s are density
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distribution function with density

f (x) =

�
n� 1
n� 2

� 
1

�
�

1
n�1
�!x 3�n

n�2 exp
�
�x

n�1
n�2

�
for x � 0.

Then, the joint density will be

g (v1; :::; vn) =

�
n� 1
n� 2

�n 
1

�
�

1
n�1
�!n v 3�nn�2

1 :::v
3�n
n�2
n exp

�
�
�
v
n�1
n�2
1 + :::+ v

n�1
n�2
n

��

for v1; :::; vn � 0. That is, eg (x) = � 1

�( 1
n�1)

�n �
n�1
n�2
�n
exp (� (x)) when x � 0. Note that

1Z
0

exp (� (x))x
1

n�1dx = �

�
n

n� 1

� 
1

�
�

1
n�1
�!n�n� 1

n� 2

�n
.

3 E¢ ciency of Auction with Points

As we have argued, auctions with points have been used in practice, as in the course bid-
ding system in business and law schools, for allocating objects to agents when monetary
transfers are not possible. Therefore, it is important to understand how this mechanism
performs in terms of welfare of agents compare to ordinal mechanisms, where agents
report their ordinal rankings over objects and based on these reported preferences an
allocation is determined.12

To make the comparison, it will be su¢ cient to consider the so-called Ranking mech-
anism due to the main result of Akyol (2020). The Ranking mechanism works as follows.
Each object is assigned to the agent who ranks that object at a lower spot (that is, who
has a higher preference ranking) and if some agents rank the object at the same place, ob-
ject is given to each agent with equal probability. For example, assume that n = 3;m = 2
and �rst agent�s strict ordinal ranking over objects fo1; o2; o3g is given by o1 � o2 � o3
and agent 2�s strict ordinal ranking is o3 � o2 � o1. Under the Ranking mechanism, o1
is allocated to agent 1; o3 is allocated to agent 2 and o2 is allocated to each agent with
probability 1

2
.

By the main result of Akyol (2020), the Ranking mechanism has strong welfare supe-
riority to other ordinal mechanisms.

Proposition 4 Akyol (2020) When each agent draws his valuation vector from an
exchangeable distribution function, then every type of agent has a higher interim payo¤
under the Ranking mechanism compare to any other anonymous, neutral and incentive
compatible ordinal mechanism.

Now, this result at hand, we are going to compare the Blotto mechanism with the
Ranking mechanism. First, it is easy to see that when n = 2 , the outcome of the Colonel

12As we have discussed in the Introduction, ordinal mechanisms are predominantly used in many
real-life allocation problems.
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Blotto game is equivalent to the Ranking mechanism. Therefore, we will restrict attention
to the case n > 2. When each agent draws his valuation vector from an exchangeable
distribution function13 as is the case in the distributional assumptions in which we obtain
equilibrium in closed-form for the Colonel Blotto game, the interim probability of an
agent to receive his kth choice under the Ranking mechanism is given by

P rankk =
2n� 2k + 1

2

To see this, note that an agent, say agent 1, will obtain his kth choice object with prob-
ability 1 if the other agent ranks this object as his jth choice for j > k which happens
with probability n�k

n
and will obtain his kth choice object with probability 1

2
if the other

agent ranks this object also as his kth choice which happens with probability 1
n
. If the

other agent ranks this object as his jth choice for j < k, agent 1 can not obtain his kth

choice. Hence,

P rankk = 1� n� k
n

+
1

2
� 1

n
=
2n� 2k + 1

2n

We start with the case when n = 3.
Assume that agents� values are independently drawn from some distribution as in

Proposition 2. Consider an agent with type (v1; v2; v3). Then, this agent�s interim payo¤
under the Blotto mechanism is

�Blotto (v1; v2; v3) =
3X
i=1

Pr

�
v2i

v21 + v
2
2 + v

2
3

B � W 2
i

W 2
1 +W

2
2 +W

2
3

B

�
vi

Then, by the Lemma 1 in Appendix C, we have that

�Blotto (v1; v2; v3)

=
3X
i=1

s
v2i

v21 + v
2
2 + v

2
3

vi

=

3X
i=1

v2ip
v21 + v

2
2 + v

2
3

=
q
v21 + v

2
2 + v

2
3

and this agent�s interim payo¤ under the Ranking mechanism is

�rank (v1; v2; v3)

=
1

6
(5v1 + 3v2 + v3)

since when n = 3, for each k 2 f1; 2; 3g

P rankk =
7� 2k
6

.

13That is, when valuations are drawn from a distribution that is invariant under permutations of its
arguments.
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We want to investigate the sign of
p
v21 + v

2
2 + v

2
3� 1

6
(5v1 + 3v2 + v3), or, equivalently

the sign of (v21 + v
2
2 + v

2
3)�

(5v1+3v2+v3)
2

36
.

v21 + v
2
2 + v

2
3 �

(5v1 + 3v2 + v3)
2

36

=
1

36

�
11v21 + 27v

2
2 + 35v

2
3 � 30v1v2 � 10v1v3 � 6v2v3

�
=

1

36

�
(v1 � 5v3)2 + (v2 � 3v3)2 + (3v1 � 5v2)2 +

�
v21 + v

2
2 + v

2
3

��
� 0

Therefore, we have the following result.

Proposition 5 Under the distributions considered in Proposition 2 , every type of every
agent has a higher interim payo¤ under the Blotto mechanism compare to any anonymous,
neutral and incentive compatible ordinal mechanism when n = 3.

Hence, we deduce that the Blotto mechanism is welfare superior to other ordinal
mechanisms in a very strong sense.
Same result holds for the case when n > 3.

Proposition 6 Under the distributions considered in Proposition 3, any type of any
agent has a higher interim payo¤ under the Blotto mechanism compare to any anonymous,
neutral and incentive compatible ordinal mechanism when n > 3.

Proof. See the Appendix.
Hence, the Blotto mechanism has a welfare superiority over ordinal mechanisms in a

very strong sense� every type has a higher interim payo¤ under the Blotto mechanism.
Therefore, �fake market� environment seems promising to improve upon widely used
ordinal mechanisms in terms of welfare.

4 Conclusion

We have considered the problem of allocation multiple objects to agents via an auction
with points, which is equivalent to the classical Colonel Blotto game, under incomplete
information. Although it is in general hard to come up with closed form expressions when
there is multi-dimensional incomplete information, we are able to solve and obtain simple
expressions for the equilibrium of this game for a class of value distributions. In addition,
we have established a strong welfare superiority of this allocation mechanism to other
ordinal mechanisms which are dominantly used in many real-life applications. Hence,
creating �fake market�seems a promising method as it is welfare superior to widely-used
ordinal allocation methods when prices/monetary transfers cannot be used.
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A Proof of Proposition 2

Lemma 1 De�ne a random variable U � V 21
V 21 +V

2
2 +V

2
3
, where (V1; V2; V3) is distributed

according to a continuous distribution function that has density of the form g (v1; v2; v3) �eg ((v21 + v22 + v23)) for some measurable function eg on R+ such that
1Z
0

eg (x)x 1
2dx =

4

�
.

Then, U is distributed according to F (u) = u
1
2 with support [0; 1].

Proof. Let V = V 22
V 21 +V

2
2 +V

2
3
and W = V 21 + V

2
2 + V

2
3 .

Now,

V 21 = UW

V 22 = VW

V 23 = (1� U � V )W ,

or,

V1 = U
1
2W

1
2

V2 = V
1
2W

1
2

V3 = (1� U � V )
1
2 W

1
2 .

Then,
h (u; v; w) = g

�
u
1
2w

1
2 ; v

1
2w

1
2 ; (1� u� v)

1
2 w

1
2

�
det (J) ,

where

J =

264 1
2
u�

1
2w

1
2 0 1

2
u
1
2w�

1
2

0 1
2
v�

1
2w

1
2

1
2
v
1
2w�

1
2

�1
2
(1� u� v)�

1
2 w

1
2 �1

2
(1� u� v)�

1
2 w

1
2

1
2
(1� u� v)

1
2 w�

1
2

375
Hence,

h (u; v; w)

= g
�
u
1
2w

1
2 ; v

1
2w

1
2 ; (1� u� v)

1
2 w

1
2

� 1
8

w
1
2

u
1
2v

1
2 (1� u� v)

1
2

!

= eg (w) 1
8

w
1
2

u
1
2v

1
2 (1� u� v)

1
2

!
,
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where 0 < u; v < 1; u+ v < 1; w > 0
Hence,

h (u; v; w) =
1

8
eg (w)w 1

2

 
1

u
1
2v

1
2 (1� u� v)

1
2

!
for 0 < u; v < 1; u+ v < 1; w > 0. Now,

h (u; v) =

0@1
8

1Z
0

eg (w)w 1
2dw

1A 1

u
1
2v

1
2 (1� u� v)

1
2

!

for 0 < u; v < 1; u+ v < 1: Hence,

h (u; v) =
1

2�

 
1

u
1
2v

1
2 (1� u� v)

1
2

!

for 0 < u; v < 1; u+ v < 1: Then,

h (u) =

1�uZ
0

1

2�

 
1

u
1
2v

1
2 (1� u� v)

1
2

!
dv

=
1

2
u�

1
2 ,

for 0 < u < 1: Hence,
H (u) = u

1
2 ; 0 � u � 1,

which proves the lemma.
Proof. (of Proposition 2) Assume that Player 2 follows the given strategy. Assume
that Player 1 has values (v1; v2; v3). Then, he solves

max
0�b1;b2�B

Pr

�
b1 �

w21
w21 + w

2
2 + w

2
3

�
v1 + Pr

�
b2 �

w22
w21 + w

2
2 + w

2
3

�
v2 +

+Pr

�
B � b1 � b2 �

w23
w21 + w

2
2 + w

2
3

�
v3

Then, by above Lemma, the problem becomes

max
0�b1;b2�B

b
1
2
1 v1 + b

1
2
2 v2 + (B � b1 � b2)

1
2 v3

FOC:
b
� 1
2

1 v1 = (B � b1 � b2)�
1
2 v3

and
b
� 1
2

2 v2 = (B � b1 � b2)�
1
2 v3.

12



Hence,

b2 = b1

�
v22
v21

�
and

B � b1 � b2 = b1
�
v23
v21

�
.

Thus,

B = b1 + b2 + (B � b1 � b2)

= b1

�
1 +

�
v22
v21

�
+

�
v23
v21

��
= b1

�
v21 + v

2
2 + v

2
3

v21

�
.

Hence,

b1 = B
v21

v21 + v
2
2 + v

2
3

and

b2 = B
v22

v21 + v
2
2 + v

2
3

.

Hence, � (:) is a best response to itself , giving the desired result.

B Proof of Proposition 3

Lemma 2 De�ne a random variable U1 � V
n�1
n�2
1

V
n�1
n�2
1 +:::+V

n�1
n�2
n

, where (V1; :::; Vn) is distributed

according to a continuous distribution function that has density of the form g (v1; :::; vn) �

[v1:::vn]
3�n
n�2 eg��v n�1n�2

1 + :::+ v
n�1
n�2
n

��
for some measurable function eg on R+ such that

1Z
0

eg (x)x 1
n�1dx =

 
�
�

n
n�1
�

�n
�

1
n�1
�!�n� 1

n� 2

�n
.

Then, U1 is distributed according to F (u) = u
1

n�1 with support [0; 1].

13



Proof. Let for any i 2 f2; :::; n� 1g, de�ne Ui � V
n�1
n�2
i

V
n�1
n�2
1 +:::+V

n�1
n�2
n

and let W = V
n�1
n�2
1 +

:::+ V
n�1
n�2
n :Now,

V
n�1
n�2
1 = U1W

:::

V
n�1
n�2
n�1 = Un�1W

V
n�1
n�2
n = (1� U1 � :::� Un�1)W ,

or,

V1 = U
n�2
n�1
1 W

n�2
n�1

:::

Vn�1 = U
n�2
n�1
n�1W

n�2
n�1

Vn = (1� U1 � :::� Un�1)
n�2
n�1 W

n�2
n�1 .

Then,

h (u1; :::; un�1; w)

= g

�
u
n�2
n�1
1 w

n�2
n�1 ; :::; u

n�2
n�1
n�1w

n�2
n�1 ; (1� u1 � :::� un�1)

n�2
n�1 w

n�2
n�1

�
det (J)

Now,14

det (J) =

�
n� 2
n� 1

�n
w(n�2)�

1
n�1

u
1

n�1
1 :::u

1
n�1
n�1 (1� u1 � :::� un�1)

1
n�1

.

Hence,

h (u1; :::; un�1; w)

= g

�
u
n�2
n�1
1 w

n�2
n�1 ; :::; u

n�2
n�1
n�1w

n�2
n�1 ; (1� u1 � :::� un�1)

n�2
n�1 w

n�2
n�1

�
�0@�n� 2

n� 1

�n
w(n�2)�

1
n�1

u
1

n�1
1 :::u

1
n�1
n�1 (1� u1 � :::� un�1)

1
n�1

1A
= [u1:::un�1 (1� u1 � :::� un�1)]

3�n
n�1

�
wn

3�n
n�1

�eg (w) �0@�n� 2
n� 1

�n
w(n�2)�

1
n�1

u
1

n�1
1 :::u

1
n�1
n�1 (1� u1 � :::� un�1)

1
n�1

1A
=

��
n� 2
n� 1

�n�
[u1:::un�1 (1� u1 � :::� un�1)]

2�n
n�1 eg (w)w 1

n�1 .

14See Lemma for a proof of this
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Then,

h (u1; :::; un�1) =

0@ 1Z
0

eg (w)w 1
n�1dw

1A��n� 2
n� 1

�n�
[u1:::un�1 (1� u1 � :::� un�1)]

2�n
n�1

=

 
�
�

n
n�1
�

�n
�

1
n�1
�! [u1:::un�1 (1� u1 � :::� un�1)] 2�nn�1

for 0 < u1:::; un�1 < 1; u1 + ::: + un�1 < 1. But, this is a Dirichlet Distribution with
parameters

�
1
n�1 ;

1
n�1 ; :::;

1
n�1
�
and hence

H (u) = u
1

n�1 ; 0 � u � 1,

which proves the lemma.
Proof. (of the Proposition 3) Assume that Player 2 follows the given strategy. Assume
that Player 1 has values (v1; :::; vn). Then, he solves

max
0�b1;:::bn�1�B
b1+:::+bn�1�B

Pr (b1 � X1) v1 + :::+ Pr (B � b1 � :::� bn�1 � Xn) vn

where for all i 2 f1; :::; ng

Xi =
w

n�1
n�2
i

w
n�1
n�2
1 + w

n�1
n�2
2 + :::+ w

n�1
n�2
n

.

Then, by above Lemma, the problem becomes

max
0�b1;:::bn�1�B
b1+:::+bn�1�B

b
1

n�1
1 v1 + :::+ (B � b1 � :::� bn�1)

1
n�1 vn

FOC:

b
2�n
n�1
1 v1 = (B � b1 � :::� bn�1)

2�n
n�1 vn

:::

b
2�n
n�1
n�1vn�1 = (B � b1 � :::� bn�1)

2�n
n�1 vn.

Hence,

bi = b1

0@v n�1n�2
i

v
n�1
n�2
1

1A

15



for all i 2 f2; ::; n� 1g Thus,

B = b1

 
1 +

�
v2
v1

�n�1
n�2

+ :::+

�
vn
v1

�n�1
n�2
!

= b1

0@v n�1n�2
1 + v

n�1
n�2
2 + :::+ v

n�1
n�2
n

v
n�1
n�2
1

1A .
Hence,

b1 = B
v
n�1
n�2
1

v
n�1
n�2
1 + v

n�1
n�2
2 + :::+ v

n�1
n�2
n

and similarly others.

Lemma 3 (Determinant of Jacobian)

det (J) =

�
n� 2
n� 1

�n
w(n�2)�

1
n�1

u
1

n�1
1 :::u

1
n�1
n�1 (1� u1 � :::� un�1)

1
n�1

.

Proof. Now,

J =

26666666664

n�2
n�1u

n�2
n�1�1
1 w

n�2
n�1 0 0 : 0 n�2

n�1u
n�2
n�1
1 w

n�2
n�1�1

0 n�2
n�1u

n�2
n�1�1
2 w

n�2
n�1 0 : 0 n�2

n�1u
n�2
n�1
2 w

n�2
n�1�1

: : : : : :
: : : : : :

0 0 : : n�2
n�1u

n�2
n�1�1
n�1 w

n�2
n�1 n�2

n�1u
n�2
n�1
n�1w

n�2
n�1�1

�n�2
n�1u

n�2
n�1�1
n w

n�2
n�1 �n�2

n�1u
n�2
n�1�1
n w

n�2
n�1 : : �n�2

n�1u
n�2
n�1�1
n w

n�2
n�1 n�2

n�1u
n�2
n�1
n w

n�2
n�1�1

37777777775
, where un = 1� u1 � :::� un�1. Denoting J = (ai;j)ni;j=1

det (J) =
nX
i=1

(�1)n+i an;iMn;i,

whereMn;i is the determinant of the (n� 1)�(n� 1) matrix obtained from J by deleting
n-th row and i� th column. Now, for all 1 � i � n� 1

Mn;i = (�1)n+i�1
�
n� 2
n� 1

�n�1�
u
n�2
n�1
i w

n�2
n�1�1

�0BB@ nY
j=1
j 6=i

uj

1CCA
n�2
n�1�1

w
(n�2)2
n�1

and

Mn;n =

�
n� 2
n� 1

�n�1 n�1Y
j=1

uj

!n�2
n�1�1

wn�2.
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Hence,

det (J)

=
nX
i=1

(�1)n+i an;iMn;i

=
n�1X
i=1

(�1)n+i
�
�
�
n� 2
n� 1 (1� u1 � :::� un�1)

n�2
n�1�1w

n�2
n�1

��
�26664(�1)n+i�1

�
n� 2
n� 1

�n�1
u
n�2
n�1
i w

n�2
n�1�1

0BB@ nY
j=1
j 6=i

uj

1CCA
n�2
n�1�1

w
(n�2)2
n�1

37775+

+

��
n� 2
n� 1

�
(1� u1 � :::� un�1)

n�2
n�1 w

n�2
n�1�1

�24�n� 2
n� 1

�n�1 n�1Y
j=1

uj

!n�2
n�1�1

wn�2

35
=

��
n� 2
n� 1

�n
(1� u1 � :::� un�1)

n�2
n�1�1 (u1:::un�1)

n�2
n�1�1w

n�2
n�1�1

�
��

w
n�2
n�1+

(n�2)2
n�1 (u1 + :::+ un�1) + w

n�2 (1� u1 � :::� un�1)
�

=

��
n� 2
n� 1

�n
(1� u1 � :::� un�1)

n�2
n�1�1 (u1:::un�1)

n�2
n�1�1w

n�2
n�1�1

�
��

w(n�2) (u1 + :::+ un�1) + w
n�2 (1� u1 � :::� un�1)

�
=

��
n� 2
n� 1

�n
(1� u1 � :::� un�1)

n�2
n�1�1 (u1:::un�1)

n�2
n�1�1w

n�2
n�1�1

� �
w(n�2)

�
=

�
n� 2
n� 1

�n
(1� u1 � :::� un�1)

n�2
n�1�1 (u1:::un�1)

n�2
n�1�1w

n�2
n�1�1+(n�2)

=

�
n� 2
n� 1

�n
w(n�2)�

1
n�1

u
1

n�1
1 :::u

1
n�1
n�1 (1� u1 � :::� un�1)

1
n�1

.

C Proof of Proposition 6

Proof. Now, consider a bidder with type (v1; :::; vn). Then, his expected payo¤

�Blotto (v1; :::; vn) =

nX
i=1

Pr

0@ v
n�1
n�2
1

v
n�1
n�2
1 + :::+ v

n�1
n�2
n

� W
n�1
n�2
i

W
n�1
n�2
1 + :::+W

n�1
n�2
n

1A vi

17



Then, by the lemma below, we have that

�Blotto (v1; ::; vn)

=

nX
i=1

0@ v
n�1
n�2
i

v
n�1
n�2
1 + :::+ v

n�1
n�2
n

1A 1
n�1

vi

=

nX
i=1

v
n�1
n�2
i�

v
n�1
n�2
1 + :::+ v

n�1
n�2
n

� 1
n�1

=

�
v
n�1
n�2
1 + :::+ v

n�1
n�2
n

�n�2
n�1

and

�rank (v1; :::; vn) =

nX
i=1

Pivi

=
nX
i=1

vi

�
1

2n
+ 1� i

n

�

=

�
1

2n
+ 1

� nX
i=1

vi

!
� 1

n

 
nX
i=1

ivi

!

=
1

2n

 
(2n+ 1)

 
nX
i=1

vi

!
� 2

 
nX
i=1

ivi

!!

Now,

d (v1; ::; vn)

= �Blotto (v1; ::; vn)� �rank (v1; :::; vn)

=

�
v
n�1
n�2
1 + :::+ v

n�1
n�2
n

�n�2
n�1

� 1

2n

 
(2n+ 1)

 
nX
i=1

vi

!
� 2

 
nX
i=1

ivi

!!

We claim that d (v1; ::; vn) � 0 for all v =(v1; ::; vn) 2 [v; v]n for any v > v � 0 and
v1 � v2 � ::: � vn. To do this we will show that

0 �
"

min
v1�v2�:::�vn�v

�
v
n�1
n�2
1 + :::+ v

n�1
n�2
n

�n�2
n�1

� 1

2n

 
(2n+ 1)

 
nX
i=1

vi

!
� 2

 
nX
i=1

ivi

!!#
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Note that"
min

v�v1�v2�:::�vn�v

�
v
n�1
n�2
1 + :::+ v

n�1
n�2
n

�n�2
n�1

� 1

2n

 
(2n+ 1)

 
nX
i=1

vi

!
� 2

 
nX
i=1

ivi

!!#

�
"

min
v1�v2�:::�vn�0

�
v
n�1
n�2
1 + :::+ v

n�1
n�2
n

�n�2
n�1

� 1

2n

 
(2n+ 1)

 
nX
i=1

vi

!
� 2

 
nX
i=1

ivi

!!#

�
"

min
v1;v2;:::vn�0

�
v
n�1
n�2
1 + :::+ v

n�1
n�2
n

�n�2
n�1

� 1

2n

 
(2n+ 1)

 
nX
i=1

vi

!
� 2

 
nX
i=1

ivi

!!#

Actually, it is easy to see that last two problems are equivalent, but weak inequality is
su¢ cient for our purpose. Now, to show the desired result we will concentrate on the last
minimization problem. First, observe that

@

@vi
d (v1; ::; vn)

= v
1

n�2
i

�
v
n�1
n�2
1 + :::+ v

n�1
n�2
n

�� 1
n�1

� 2n+ 1
2n

+
i

n

=
v

1
n�2
i�

v
n�1
n�2
1 + :::+ v

n�1
n�2
n

� 1
n�1

� 2n+ 1
2n

+
i

n

@2

@vi@vj
d (v1; ::; vn) = � 1

n� 2v
1

n�2
j v

1
n�2
i

�
v
n�1
n�2
1 + :::+ v

n�1
n�2
n

�� n
n�1

� 0

@2

@v2i
d (v1; ::; vn)

=
1

n� 2v
3�n
n�2
i

�
v
n�1
n�2
1 + :::+ v

n�1
n�2
n

�� 1
n�1

� 1

n� 2v
2

n�2
i

�
v
n�1
n�2
1 + :::+ v

n�1
n�2
n

�� n
n�1

=
1

n� 2v
3�n
n�2
i

�
v
n�1
n�2
1 + :::+ v

n�1
n�2
n

�� n
n�1
��
v
n�1
n�2
1 + :::+ v

n�1
n�2
n

�
� v

n�1
n�2
i

�
� 0

For a given v�i 6= 0; @
@vi
(d (v1; ::; vn)) =

v
1

n�2
i 

v
n�1
n�2
1 +:::+v

n�1
n�2
n

! 1
n�1

� 2n+1
2n

+ i
n
< 0 for vi = 0

since i � n, then the minimizing vi for a given v�i 6= 0 is such that it solves

v
1

n�2
i�

v
n�1
n�2
1 + :::+ v

n�1
n�2
n

� 1
n�1

� 2n+ 1
2n

+
i

n
= 0
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Furthermore, for v�i = 0, the minimizing vi = 0 since for v�i = 0, minimization problem
becomes

min
vi�0

vi �
1

2n
[(2n+ 1)� 2i] vi

or

min
vi�0

vi

�
1� 2n+ 1� 2i

2n

�
min
vi�0

vi

�
2i� 1
2n

�
Since

�
2i�1
2n

�
> 0, minimizing vi = 0 .

Given these suppose that minimizing v 6= 0. That is, there is some j such that vj 6= 0.
But then, by above observation vi 6= 0 for all i 6= j.
Now, then each i satis�es

v
1

n�2
i

�
v
n�1
n�2
1 + :::+ v

n�1
n�2
n

�� 1
n�1

� 2n+ 1
2n

+
i

n
= 0

or

v
1

n�2
i

�
v
n�1
n�2
1 + :::+ v

n�1
n�2
n

�� 1
n�1

=
2n+ 1

2n
� i

n

v
1

n�2
i

v
1

n�2
j

=
2n+1
2n

� i
n

2n+1
2n

� j
n

vi
vj
=

 
2n+1
2n

� i
n

2n+1
2n

� j
n

!n�2
Hence,

vi = v1

� 2n+1
2n

� i
n

2n+1
2n

� 1
n

�n�2
,i > 1

or

vi = v1

�
2n+ 1� 2i
2n� 1

�n�2
,i > 1
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Then, the objective function d (:; ::; :) becomes: 
nX
i=1

v
n�1
n�2
1

�
2n� 2i+ 1
2n� 1

�n�1!n�2
n�1

� 1

2n

 
(2n+ 1)

 
nX
i=1

v1

�
2n� 2i+ 1
2n� 1

�n�2!
� 2

 
nX
i=1

v1i

�
2n� 2i+ 1
2n� 1

�n�2!!

=
v1

(2n� 1)n�2

24 nX
i=1

(2n� 2i+ 1)n�1
!n�2

n�1

� 1

2n

 
nX
i=1

(2n+ 1� 2i) (2n� 2i+ 1)n�2
!35

=
v1

(2n� 1)n�2

24 nX
i=1

(2n� 2i+ 1)n�1
!n�2

n�1

� 1

2n

 
nX
i=1

(2n� 2i+ 1)n�1
!35

=
v1

(2n� 1)n�2 (2n)

24(2n) nX
i=1

(2n� 2i+ 1)n�1
!n�2

n�1

�
 

nX
i=1

(2n� 2i+ 1)n�1
!35

=

24 v1

(2n� 1)n�2 (2n)

 
nX
i=1

(2n� 2i+ 1)n�1
!n�2

n�1
35242n� nX

i=1

(2n� 2i+ 1)n�1
! 1

n�1
35

Note that the term in the �rst bracket is positive.

Claim 1
h
2n�

�Pn
i=1 (2n� 2i+ 1)

n�1� 1
n�1
i
> 0 for n � 3

Proof. We want to show

(2n)n�1 >
nX
i=1

(2n� 2i+ 1)n�1

or

nn�1 >

nX
i=1

�
2n� 2i+ 1

2

�n�1
=

nX
i=1

�
n� i+ 1

2

�n�1
Now, for each i 2 f1; :::; ng

�
n� i+ 1

2

�n�1
<

n�i+1Z
n�i

tn�1dt
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since

n�i+1Z
n�i

tn�1dt =

1
2Z
0

�
(n� i+ u)n�1 + (n� i+ 1� u)n�1

�
du

>

1
2Z
0

2

�
n� i+ 1

2

�n�1
du

=

�
n� i+ 1

2

�n�1
where strict inequality is due to the fact that f (t) = tn�1 is a strictly convex function.
Thus,

nX
i=1

�
n� i+ 1

2

�n�1
<

nX
i=1

n�i+1Z
n�i

tn�1dt

=

nZ
0

tn�1dt

= nn�1

which is what we wanted to show. Thus, the value objective function is positive when
v1 > 0 but note that the value of objective function is 0 when v = 0. Hence, the minimum
is achieved at vi = vj = 0 for all i; j giving that for all v

d (v1; ::; vn) � 0
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